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In view of recent experimental and theoretical work on the conformation of semicrystalline polymers 
analytical calculations of the mean chain dimensions are performed for models containing short 
crystalline sequences and alternating amorphous sequences. The results are analysed and illustrated by 
means of the parameters for polyethylene and isotactic polystyrene. The invariance of the radius of 
gyration with crystallinity can only be explained by introducing chain folding in the crystalline sequence. 
The number of folds required is discussed considering the data obtained both in the Guinier and 
intermediate ranges of scattering vectors. 

INTRODUCTION 

A large body of neutron scattering data has been ga- 
thered ~ -4 on the chain conformation of semicrystalline 
polymers. In the case of polyethylene, experiments perfor- 
med by different teams have shown that labelled chains 
have the same dimensions in the bulk-crystallized state as 
in the melt. This result as well as the behaviour of the 
scattered intensity in the intermediate range have been 
used by Yoon and Flory 5 to propose a conformational 
model wherein regular folding does not take place. These 
authors draw additional support 6 for their model based 
on considerations of the long relaxation time z,, in the 
melt. For polyethylene, they show that this relaxation 
time 7,. is much longer than the time 7p needed for the 
crystalline growth front to cover a distance comparable 
with the chain dimensions. Thus thermal motions can 
only affect local arrangements, excluding the possibility of 
adjacent re-entry. However, this criterion has not been 
universally accepted. Recently, Klein 7 and DiMarzio et  
al. 8 have suggested that the diffusion rate of chains in the 
melt must be taken into account, since the existence of 
isotopic segregation has shown this effect to be com- 
parable to that of the rate of spherulitic growth 1. Their 
estimates of the time scale for the disentanglement of 
polymers from the melt during crystallization is about 
three orders of magnitude greater than the estimates given 
by Flory and Yoon. They conclude that chain folding is 
not proven but neither is it disproven by kinetic 
considerations. Guttman et  al. 9 have pointed out non- 
physical characteristics in the Yoon Flory model. Thus, if 
no re-entry occurs, the density of the amorphous material 
located at the crystal surface would be close to 2, which is 
clearly impossible. Furthermore, they claim that 
experimental curves obtained in the intermediate range 
can be fitted, within experimental error, to scattering 
functions for conformational models containing folded 
sequences 9. 

Alternatively, in the case of isotatic polystyrene, we 
have effectively shown 4 that the conformation in the 
semicrystallized state is strongly dependent on the chain 
mobility in the medium. In contrast with polyethylene, the 

radius of gyration varies as M °'78 and for the highest 
tagged chain molecular weight increases drastically with 
crystallinity within a matrix of medium molecular weight 
(Mw=4X 10s). It must be mentioned that no isotopic 
segregation occurs in these experiments. From these 
results we have proposed a conformation called ACA ~° 
which contains a large crystalline sequence incorporated 
along the 330 plane with two amorphous wings. By 
increasing the molecular weight of the matrix (Mw---1.7 
× 106), the same results as published for polyethylene 
have been found 4 (invariance of mean dimensions with 
crystallinity). 

The purpose of this paper is to present some analytical 
calculations of the radius of gyration for conformational 
models made of short crystalline sequences in order to 
complete a previous paper 1° devoted to models possess- 
ing large crystalline sequences. Two models are con- 
sidered with simple arguments: 

(i) The garland model (F igure  la) with N, identical 
subunits made of a short crystalline sequence containingf 
rods and an amorphous sequence which is the simplest 
scheme frequently envisaged; 

(ii) A central core model, where the core contains fl rods 
and each crystalline sequence in the wings contains f2 rods 
(F igure  lb). This conformation has also been proposed by 
Guttman et al. 9 to explain the results for polyethylene. 
However, they have performed numerical calculations for 
only two different molecular weights of the labelled 
chains. In this paper, an extension of the calculation to 
any molecular weight is attempted. 

The theoretical relations will be illustrated and dis- 
cussed in relation to the parameters for polyethylene and 
isotactic polystyrene. 

THEORETICAL 

Here, calculations are performed by considering the 
medium as completly crystalline morphologically. This 
means that pure amorphous domains are non-existent. 
Consequently, the equations given will only be useful for 
substantial degrees of crystallinity. 
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Figure 1 (a) Garland model; (b) central core model  

Garland model (Figure la) 
We assume N~ equivalent subunits of end-to-end 

distance (~2)1/2. Without considering orientation cor- 
relation 1 ~ we are allowed to express the radius of gyration 
as ;  

R2 N s ~  
G -  6 (1) 

Consider ingfrods per crystalline portion separated by a 
distance (~)1/2, and taking I~ as the lamellar thickness 
equation (1) is only valid for lc>(F)l/2(f - 1). 

In Figure la, ~ can be calculated according to: 

= AB + BC + CD (2) 

which leads to: 

~2 =AB 2 +BC 2 + C D  2 +AB.CD +BC.CD (3) 

The two last terms in relation (3) can be written: 

n# 

AB.CD = ~AB.bi (4) 
i 

where bl is the vector defined by the ith statistical segment 
of a Gaussian chain having na segments. Since we can 
assume that there is no correlation of orientation between 
AB or BC with any b i (except for i = 1 and i = na), we can 
approximate equation (4) by: 

,AB.CD = 0  and BC.CD =0. 

Introducing the different parameters, ~2 becomes: 

o r  

~2 = (f_ 1)212 + l~+ nab 2 

~2__ 2 2 2 2 - ( f - l )  I +lc+6r a 

(5) 

(6) 

where ~r a is the radius of gyration of the amorphous 
sequence assuming that the end-to-end distance is the 
same as for a free Gaussian chain. This approximation 
seems correct since such a model is invoked when the 
overall chain has no time to rearrange during crystalli- 
zation. However, a better approximation would be to take 
into account a perturbation of the end-to-end distance 
(S2) 1/2 w i t h :  

r 
S 2 _-fi na b2 

Then, equation (6) must be written: 

~2 = ( f _  1)212 + 12+s 2 (7) 

Alternatively, to take into account the existence of 
junction loops between rods of the same crystalline 
sequence, we introduce the parameter z expressed as 
follows: 

fnp 
z = ( f _ l ) n , + f n  ' (8) 

where n, and nz are respectively the number of monomers 
in a rod and in a loop. If no=( f -  1)nl+fn,, we obtain: 

X = n a  -'~ n~ n o + nc = ( 9 )  

where x is the degree of crystallinity. 
Considering the definition of the number of subunits N s 

N 
Ns - (10) 

t/a -k- n c 

where N is the total number of monomers in the chain, we 
arrive at: 

Nx 
N, -  (11) 

f . ,  

1386 POLYMER, 1980, Vol 21, December 



Chain dimensions in the semi-crystallized state: Jean-Michel Guenet 

41a I lb 

Figure 2 (k&~~)“* as a function of crystallinity x in the case 

of polyethylene for different numbers f of rods in the crystalline 
sequence (limited to f = 7 in order to apply equation (1) without 
significant approximation). Full lines define experimental regions 
fir which e&ation (13) pertains. (a) Adjacent reentry along 226 
plane (/T)l/* = 4.93 IL; (b) second neighbour re-entry along 220 
plane (/PI l I2 = 9.9 a 

Applying equation (1) R(2; reads: 

R$=----- =-xjp+ (12) 
Z 

where M and M, are respectively the molecular weights of 

the chain and of the rod, and R; the radius of gyration of 
the chain in the completely amorphous state. This last 
parameter may be measured by SANS experiments’,“. In 
the discussion the following relation will preferentially be 
used: 

1’2 (13) 

If now an end-to-end perturbation in the amorphous 
sequence is considered, we obtain: 

R; l/2 

(-1 =[ Mx 
Rf, 6Rkf M, 

(6s2 +(f-l)2p+l;) 1’2 (14) 1 
Central core mollel 

Calculations of the radius of gyration for the ACA 
model have been derived in a previous paper”. The result 
is: 

R2 =(3-2y)Ri +yr,2 +(I -y) 2 A 
2(2+Y)j-p 

(15) 

where y is the weight fraction of the crystalline sequence 

and in the case of regular folding along an hk0 plane” 

jp Jf- u2z21 
P ~ r, 5 lf/lZ. 

12 

R; is the mean square radius of gyration in the pure 
amorphous state. Introducing a small change by replacing 
the pure amorphous A wings by semicrystalline wings, the 
conformation becomes identical to the central core model 

drawn in Figure 1 b. The mean square dimensions R% can 
then be calculated using equation (15) merely by replacing 

R: by Rg which is the radius of gyration of the chain 
adopting a total garland conformation with f2 rods per 
crystalline sequence. This procedure is possible since, for a 

Gaussian conformation or the ‘garland’ model, the mean 
square dimensions are proportional to the molecular 
weight of the chain. Consequently, equation (15) must be 
modified by introducing new parameters: y, = the weight 
fraction of the central core (yl = M,f;/M); y, = the weight 
fraction of crystalline sequence in the wings (with y1 + (1 
- y,)y, = x).f, andf, are respectively the number of rods 
in the central core and in a crystalline sequence in the 
wings (Figure lb). 

We obtain: 

R,2 =(3-2yl)(fl- 1)2;+y1$+(1 -yl)2pF 
v+YlJ~ 

(16) 

in which Rg may be represented by: 

(17) 

DISCUSSION 

From these equations it is clearly impossible to describe 
the specific behaviour of the two models. Hence the 
calculations will be illustrated using known parameters 
for polyethylene and isotactic polystyrene. 

Polyethylene 

Most discussions of semicrystalline models have been 
essentially based on an experiment performed by Schelten 
et al.‘. Their samples of polyethylene, rapidly quenched 
from molten state to solid state, are characterized by a 
degree of crystallinity x = 0.65 and a long spacing: L = 250 
A leading to 1, = 160 A’. This method of preparation 
avoids the formation of isotopic clusters. Experimental 
results show no variation of mean dimensions after 
crystallization. 

Garland model. For computing the ratio (z/z)“2 
we will consider two cases: 

(i) adjacent re-entry along the 200 plane as suggested by 

infra-red experiments12 [(12)‘12 =4.93 A]; 
(ii) re-entry between second neighbours as proposed to 

occur in single crystals2 but along 200 plane [(12)‘12 =9.9 

Al. 
In Figures 2a and 2b equation (13) is plotted as a 

function of X for the two cases described above fromf= 1 

to f = 7 using Rf, = 0.2 M’. The principle remark which 
follows from this study is that a model without folding 
leads to an increase of 300% in the radius of gyration for x 
=0.65. Consequently, the only way to observe an in- 
variance in the mean dimensions for f’= 1 would be to 
assume a negative radius of gyration for the amorphous 
sequence. The case wheref= 3 is particularly interesting. 
If we consider regular folding, the invariance of the radius 
of gyration can only be mathematically obtained by 
putting z < x. This would mean that the crystallinity in the 
lamella would be smaller than that of the whole sample 
which is clearly impossible. If we now consider, as 
proposed by Yoon and Flory’, an irregular re-entrance 

with pescape =0.3 meaning that, on average the chain 
threads three times through the lamella before going to 
another, we obtain ,f = 3. 
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Figure 3 Radius of  gyrat ion as funct ion of  molecular weight on a 
double logari thmic scale in the case of the central core model fo r  
polyethylene. Full line stands f o r  exper imental  results I,  broken 
line f l  = 7 wi th  f2 = 3, dot ted line f l  = 11 wi th  )'2 = 3 

To take this case into account (that the implantation is 
somewhat at random in the crystal) the term containing Of 
-1)212/6 in equation (13) must be modified and it will 
have a smaller value than for regular folding. However, 
the term containing 12/6 is always much larger than 1 for f 
= 3 so that the only mathematical way to obtain R 2 -~ R 2 
is also by putting z < x  in this model, which is a non- 
physical solution. Furthermore, both for regular and 
irregular re-entry with f =  3, it is impossible to account for 
the invariance of the mean dimensions with crystallinity 
by taking a mean square end-to-end distance s 2 for the 
amorphous sequences smaller than that for a free 
Gaussian chain. We note that z < x is equivalent to the 
anomalous density pointed out in the disordered region 
for the Flory model 5 by Guttman et al. 9 from numerical 
computations.* 

In order to observe an invariance of mean dimensions 
after crystallization, we have to introduce folds in the 
crystalline sequence. After Fioure 2, the best fit cor- 
responds to f =  5 to f =  7, for which the radii of gyration in 
the molten state and in the 65% crystallized state differ by 
approximately 20%. Taking into account the relative 
accuracy of the SANS measurements performed on 
polyethylene ~ and the approximations in the calculations, 
this difference lies within the experimental error. This 
result is similar to others obtained by Monte-Carlo 
simulation 9. However, the distinction between adjacent 
re-entry and second neighbour re-entry appears 
impossible. This arises from a large lamellar thickness 
compared with the width of the crystalline sequence. 

Central core model. Calculations for molecular wei- 
ghts of M =  3.5 x 10 4 and 4.9x 10 4 have been performed 

* Remark. We must  here take into account the fact that lameUae of 
x3 different thickness are present in the medium . Accordingly, calculating 

the value of I c for models where f =  1 or f = 3  could pertain for 
polyethylene, we obtain I c ~ 10 A which is of the order of the persistence 

length in the amorphous  state. Thus, whatever the value of I c, R~is  

always larger than  R ]  for these models. 

using the Monte-Carlo method by Guttman et al. 9. They 
suggest a central core with f l  = 7 to f l  = 11 and f2 = 3. 
Using these values, plots of radius of gyration as a 
function of molecular weight reported in Figure 3 have 
been obtained from equation (16) for 3.5 x 104 ~< M ~< 105. 
These results show that the approximations used in the 
calculation of Ro have almost no influence since, for M 
= 4.9 x 104, values obtained from the Monte-Carlo simu- 
lation 9 are close to those calculated here (see Table 1). 
Returning to Figure 3, we see that for M > 105 theoretical 
values of Rc 2 become much larger than those measured 
experimentally. This result is clear since for large mole- 
cular weights the central core represents only a small part 
of the overall chain and hence we must investigate the 
behaviour of the garland model again with f = 3 .  
Consequently, this model seems not to agree with ex- 
periment whatever the molecular weight, although the 
scattering function derived from it fits experimental values 
of intensity at large angles. However, we have shown 1° 
that increasing the central core sequence with molecular 
weight meets the experimental criterion in the Guinier 
range but no information was obtained in the inter- 
mediate range. 

In view of these results, the only model which is seen to 
fit the experimental criterion with regard to invariance of 
the radius of gyration is the garland model containing 5 to 
7 folds per crystalline sequence. Looking at the intensity 
scattered at large angles, and particularly the experiments 
of Sadler 2, it is possible to discover whether the re-entry 
is adjacent or takes place between second neighbours. In 
this case, the intensity exhibits a crossover from l(q) ~ q -  2 
to I(q) ~ q -  1 suggesting the presence of isolated rods. The 
crossover scattering vector at which this behaviour occurs 
is  15- 

2 
q * m  m 

(12) I/2 

It follows from the results of Sadler and Keller2:(1-~)1/2 ~ 8 
to 10 A. This supports the garland model with second 
neighbour re-entry. SANS experiments have shown that 
this occurs in single crystals both of polyethylene 2 and 
isotactic polystyrene 14 and thus there is no reason for 
ignoring a similar effect in the bulk. 

lsotactic polystyrene. We have shown in a previous 
paper 4 that isotactic polystyrene chains can exhibit two 
different conformations in the bulk crystallized state 
according to the mobility in the medium. The first 
conformation, corresponding to the ACA model has 
already been widely discussed elsewhere 4. The second 
conformation, obtained by diminishing the mobility, and 

Tab/e 1 Values o f  the radius of  gyrat ion fo r  the central core model 
in the case of polyethylene chains of molecular weight M w = 
4.9 x 104. (a) From equat ion (16); (b) f rom ref 9; (c) exper imental  
value f rom ref (1) 

(A c)U= la) Cb) Cc) 

f l  = 7 126 108 102 ~ = 3  

f l  = 11 
f2 = 3 109 101 102 
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Figure 4 (R---~/~A)1/2 as function of x in the case of isotactic 
polystyrene for different values of f, garland model; limited to 
[=  5 in order to apply equation (1) without significant approxima- 
tion. Full lines define the experimental region 

for which the invariance of mean dimensions as in 
polyethylene has been observed, will be examined here in 
order to determine whether regular folding occurs in this 
case. Since a central core type model fits the first 
conformation 4, only the garland model is considered 
here. 

SANS results have been obtained on samples crystal- 
lized at 185°C leading to lc= 100 A and X - - 0 . 3 5 4 .  For 
isotactic polystyrene, re-entry occurs along 330 plane 16. 
This arises from the high energy required to change a 
right-hand helix into a left-hand helix 17 or vice versa. 
Hence, (12)1/2=12.6 A, a value much larger than in 
polyethylene. From measurements on single crystals 16, 
values of z = 0.74 for l c = 75 A have been obtained. For  l c 
= 100 A, considering the same number of monomers in 
the loops, the value__of z becomes 0.8.* 

The variation ofR ] as function of molecular weight has 
been measured at 180°C in an atactic matrix. The results 
available in a previous paper 12 are: 

n 

R e = 5 . 3 x 1 0 - 2  M 

Plots for different values of f a r e  presented in Figure 4. 
As in the case of polyethylene, the ration (~/R-~A) 1/2 is 
found to be close to 1 for f = 5. A model without re-entry 
would lead to mean dimensions 50 to 90~o higher than 
those measured in the amorphous state. It is possible to 
cross check this result 0 c= 5) with the intensity observed at 
large angles. Figure 5 shows the behaviour of the 35~o 
crystallized sample* and an amorphous sample, both 
having the same number of tagged chains. In both cases 
l(q) varies as q-2. This can be explained by considering 
the limiting form factor P(q) which is valid for q(r,2) 1/2 > 1 
and ql c > 1: 

1 2 lim P.(q) + N~ 2 lim Pc(q)] lim P(q)= N~[N~ n. n c 

(18) 

where lim P,(q) and lim Pc(q) are respectively the asym- 
ptotic expressions of the form factors for the Gaussian 
sequence and the crystalline sequence. Using the same 
symbols as before equation (18) becomes: 

Remark. For I c = 100 A and ( 1 2 )  1 / 2  = 12.6 A, tight loops would lead to z 

=0.9. 

JMrx . 
lim P(q)=Z-zXl im Pa(q)+~-z211m Pc(q) (19) 

where lim P,(q) = 2/q2R ] which represents the asymptotic 
behaviour of the scattered intensity from a chain in the 
completely amorphous state. The crystalline sequence can 
be compared with a thin sheet of length l c and width 
( f -  1)(12) I/2. For q* = 2 / ( f -  1)(12) 1/2, lim Pc(q)readsl6"l 8: 

2~ 
lim P~(q) = q21~(f - 1)(12)1/2 (20) 

Then, lim P(q) must behave as q-2 just beyond q * = 4  
x 10 -2 for f = 5 ,  which is effectively the case in our 

experiments (Fiyure 5). For  f =  3, this behaviour would be 
reached just after q* = 8 × 10-2 

Results in the Guinier range and in the intermediate 
range for isotactic polystyrene are thus consistent with 
models including the existence of regular chain folding. 

CONCLUSIONS 

The analytical calculations presented here are easily 
available and lead to values of the mean dimensions, 
particularly in the central core model, close to those 
obtained by sophisticated computation methods 9. 

The invariance of the radius of gyration with crystal- 
linity can only be accounted for by introducing regular 
folding in the crystalline sequence. Such a model is 
confirmed by considering the asymptotic behaviour of the 
scattered intensity in the intermediate range, which is 
consistent with the presence of small sheet-like structures. 
The data gathered on isotactic polystyrene 4'16'19, for 
which isotopic segregation does not take place, show 
clearly that the size of the sheet-like crystalline sequence 
increases with the chain mobility in the originally amor- 
phous medium. Thus, it seems in the case considered here 
that a conformational garland type model fits the 
experimental results and is consistent with viscoelastic 
considerations. 

1 

I I  A . _ a l l  • . . . . . .  • 

I I I 

O 2 4 6 

q x l O  2 

Figure 5 Kratky plot q21(q)/C D as function of q in arbitrary units. 
&, 35% crystallized sample (MwIPS D = 5 x 105 and MWIPS H = 
1.7 x 106); S, amorphous sample (MwIP$ D = 5 x 105 and atactic 
matrix). For the crystalline sample q--2 beheviour is reached for 
q* ~ 4 x 102 
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